Ref No: P WMA19/000/00/0407

Department of Water Affairs and Forestry Directorate: National Water Resource Planning

The Assessment of Water Availability in the Berg Catchment (WMA 19) by means of Water Resource Related Models

Report No.2 : Rainfall Data Preparation and MAP Surface

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

DEPARTMENT OF WATER AFFAIRS AND FORESTRY

THE ASSESSMENT OF WATER AVAILABILITY IN THE BERG CATCHMENT (WMA 19) BY MEANS OF WATER RESOURCE RELATED MODELS

REPORT No. 2 : RAINFALL DATA PREPARATION AND MAP SURFACE

Final

July 2007

Department of Water Affairs and Forestry Directorate National Water Resource Planning

THE ASSESSMENT OF WATER AVAILABILITY IN THE BERG CATCHMENT (WMA 19) BY MEANS OF WATER RESOURCE RELATED MODELS

REPORT No. 2 RAINFALL DATA PREPARATION AND MAP SURFACE

APPROVAL

V Jonker, L Hayes and J Beuster

Ninham Shand in association with Umvoto Africa

DWAF REF NO.

P WMA19/000/00/0407

CONSULTANTS

AUTHORS

REPORT STATUS

July 2007

Final

1

•

•

t

2

DATE

STUDY TEAM : Approved for Ninham Shand

GENGLISH -

A H M GÖRGENS

DEPARTMENT OF WATER AFFAIRS AND FORESTRY Directorate National Water Resource Planning Approved for Department of Water Affairs and Forestry

Sin **I THOMPSON** CE : NWRP (South)

OYEN WRP Director

REFERENCE

This report is to be referred to in bibliographies as :

Department of Water Affairs and Forestry, South Africa. 2007. The Assessment of Water Availability in the Berg Catchment (WMA 19) by Means of Water Resource Related Models. Report No. 2 : Rainfall Data Preparation and MAP Surface.

Prepared by Ninham Shand (Pty) Ltd in association with Umvoto Africa on behalf of the Directorate : National Water Resource Planning. DWAF Ref No. P WMA19/000/0407.

REPORT No	REPORT TITLE	VOLUME No.	VOLUME TITLE			
1	Final Summary Report					
2	Rainfall Data Preparation and MAP Surface					
3	The Assessment of Flow Gauging Stations					
		Vol 1	Data in Support of Catchment Modelling			
4	Land Use and Water Requirements	Vol 2	Invasive Alien Plant Mapping			
		Vol 3	Water Use and Water Requirements			
		Vol 1	Berg River			
5	Update of Catchment Hvdrology	Vol 2	Upper Breede River			
	, <u>-</u>	Vol 3	Peripheral Rivers			
		Vol 1	A Literature Review of Water Quality Related Studies in the Berg WMA, 1994 - 2006			
6	Water Quality	Vol 2	Updating of the ACRU Salinity Model for the Berg River			
		Vol 3	Update Monthly FLOSAL Model to WQT			
7	(Report No Not Used)					
8	System Analysis Status Re	port				
		Vol 1	Overview of Methodology and Results			
		Vol 2	Data Availability and Evaluation			
		Vol 3	Regional Conceptual Model			
		Vol 4	Regional Water Balance Model			
9	Groundwater Model	Vol 5	Cape Flats Aquifer Model			
		Vol 6	Langebaan Road and Elandsfontein Aquifer System Model			
		Vol 7	TMG Aquifer, Piketberg Model			
		Vol 8	TMG Aquifer, Witzenberg – Nuy Model			
		Vol 9	Breede River Alluvium Aquifer Model			
10	Berg and Mhlathuze Assess	sment Studies	(Refer to Report No.1)			
11	Applicability of the Sami Groundwater Model to the Berg WAAS Area					

THE ASSESSMENT OF WATER AVAILABILITY IN THE BERG CATCHMENT (WMA 19) BY MEANS OF WATER RESOURCE RELATED MODELS

RAINFALL DATA PREPARATION AND MAP SURFACE

TABLE OF CONTENTS

Page No.

1.	INTROE	DUCTION	1
2.	WATER	RESOURCES INFORMATION MANAGEMENT SYSTEM	1
3.	SELEC	FION AND SCREENING OF MONTHLY RAINFALL RECORDS	2
4.	CLASS	R AND PATCHR METHODOLOGY	4
	4.1	CLASSR	4
	4.2	PATCHR	7
5.	RAINFA	LL PATCHING RESULTS	. 11
	5.1	PROBLEMS ENCOUNTERED	. 11
	5.2	BERG RIVER CATCHMENT	. 12
	5.3	EERSTE, LOURENS AND SIR LOWRY'S PASS CATCHMENTS	. 13
	5.4	DIEP RIVER	. 14
	5.5	PALMIET AND STEENBRAS	. 15
	5.6	BREEDE AND RIVIERSONDEREND	. 16
6			
0.	WESTE	RN CAPE	. 17
0.	6.1	INTRODUCTION	. 17 . 17
0.	6.1 6.2	INTRODUCTION	. 17 . 17 . 18
	6.1 6.2 6.3	INTRODUCTION	. 17 . 17 . 18 . 18
0.	6.1 6.2 6.3 6.4	INTRODUCTION	. 17 . 17 . 18 . 18 . 19 . 19 . 20 . 20 . 21 . 22 . 23 . 23
0.	6.1 6.2 6.3 6.4 6.5	INTRODUCTION	. 17 . 17 . 18 . 18 . 19 . 20 . 21 . 22 . 23 . 23 . 24
0.	6.1 6.2 6.3 6.4 6.5 6.6	INTRODUCTION GENERAL APPROACH SELECTION OF RAINFALL STATIONS PHYSIOGRAPHIC DATA SETS 6.4.1 Selection of Independent Variables 6.4.2 Altitude 6.4.3 Continentality 6.4.4 Roughness 6.4.5 Aspect and Rain-bearing Wind Index 6.4.6 Exposure 6.4.7 Distance from Barrier Features REGRESSION ANALYSIS THE RESIDUAL SURFACE	. 17 . 17 . 18 . 18 . 19 . 19 . 20 . 21 . 22 . 23 . 23 . 24 . 25
0.	6.1 6.2 6.3 6.4 6.5 6.6 6.7	INTRODUCTION GENERAL APPROACH SELECTION OF RAINFALL STATIONS PHYSIOGRAPHIC DATA SETS 6.4.1 Selection of Independent Variables 6.4.2 Altitude 6.4.3 Continentality 6.4.4 Roughness 6.4.5 Aspect and Rain-bearing Wind Index 6.4.6 Exposure 6.4.7 Distance from Barrier Features REGRESSION ANALYSIS THE RESIDUAL SURFACE THE COMPOSITE SURFACE	. 17 . 17 . 18 . 18 . 19 . 20 . 20 . 21 . 22 . 23 . 23 . 24 . 25 . 27
0.	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	INTRODUCTION GENERAL APPROACH SELECTION OF RAINFALL STATIONS PHYSIOGRAPHIC DATA SETS 6.4.1 Selection of Independent Variables 6.4.2 Altitude 6.4.3 Continentality 6.4.4 Roughness 6.4.5 Aspect and Rain-bearing Wind Index 6.4.6 Exposure 6.4.7 Distance from Barrier Features REGRESSION ANALYSIS THE RESIDUAL SURFACE THE COMPOSITE SURFACE DISCUSSION AND CONCLUSIONS	. 17 . 17 . 18 . 18 . 19 . 20 . 20 . 21 . 22 . 23 . 23 . 24 . 25 . 27 . 27

LIST OF TABLES

Table 4.1	Seasonal distributions obtained using ClassR	5
Table 4.2	Final grouping of rainfall gauges for patching	6
Table 4.3	Final statistics of patched rainfall station records	9
Table 6.1	Rain-bearing Wind Index	
Table 6.2	Regression Coefficients	

LIST OF FIGURES

Figure 3.2Single mass plot of raw data for station 0022792WFigure 3.3Bar chart showing overlapping yearsFigure 4.1Location of patched rainfall stations in the Berg WAAS study areaFigure 5.1Location of patched rainfall stations in the Berg catchment	3 4 8 . 12 .s . 13 .14
Figure 3.3Bar chart showing overlapping yearsFigure 4.1Location of patched rainfall stations in the Berg WAAS study areaFigure 5.1Location of patched rainfall stations in the Berg catchment	4 8 . 12 .s . 13 .14
Figure 4.1 Location of patched rainfall stations in the Berg WAAS study area	8 . 12 .s . 13 .14
Figure 5.1 Location of patched rainfall stations in the Berg catchment	. 12 s . 13 . 14
	s 13 14
Figure 5.2 Location of patched rainfall stations in the Eerste, Lourens and Sir Lowry's Pas	. 14
Figure 5.3 Location of patched rainfall stations in the Diep River catchment	
Figure 5.4 Location of patched rainfall stations in the Palmiet and Steenbras catchments.	. 15
Figure 5.5 Location of patched rainfall stations in the Breede and Riviersonderend	4.0
Catchments	.16
	. 19
Figure 6.2 Altitude	. 20
Figure 6.3 Continentality	. 21
Figure 6.4 Roughness Index	. 21
Figure 6.5 Rain-bearing Wind Index	. 22
Figure 6.6 Exposure Index	. 23
Figure 6.7 Barrier Distance	. 24
Figure 6.8 Distribution of Residual Values	. 26
Figure 6.9 Semi-variogram Fitted to Residuals	. 26
Figure 6.10 Unsmoothed (left) and Smoothed (right) Residual Surfaces	. 27
Figure 6.11 Comparison of the Revised MAP Surface (Top) and the Atlas Surface (Bottom	28
Figure 6.12 Difference (mm) Between the Revised MAP Surface and the Atlas Surface	. 29
Figure 6.13 Distribution of Prediction Errors	. 29

LIST OF APPENDICES

APPENDIX A : Rainfall Stations

APPENDIX B : Stepwise Forward Linear Regression

ABBREVIATIONS

DWAF	Department of Water Affairs and Forestry
GIS	Geographical Information System
WAAS	Water Availability Assessment Study
WCSA	Western Cape System Analysis
WMA	Water Management Area
WR-IMS	Water Resources Information Management System
WRPM	Water Resources Planning Model
WRYM	Water Resources Yield Model

1. INTRODUCTION

Detailed in this report is the patching of the monthly rainfall records for the Berg WMA and contiguous areas. The patching of the monthly rainfall records is undertaken as a sub-task in the broader objective of the Berg (WMA 19) Water Availability Assessment Study (WAAS) to reconfigure existing or newly-configured water resource related models for allocable water quantification for both surface water and groundwater. As outlined in the Inception Report, this task comprises the forward extension of monthly point rainfall records from the last dates of the previous studies to September 2005 including the recent severe Western Cape drought in the analysis.

The Study Area comprises:

- The complete Berg River Catchment from its source in the Groot Drakenstein Mountains to its estuary at Laaiplek on the Atlantic West Coast.
- The Cape Town Basin, which includes the Eerste, Lourens and Sir Lowry's Pass Rivers (all of which drain into False Bay) as well as the groundwater resources for the Peninsula.
- The Diep River, which flows westerly from its source in the Riebeeck Kasteel mountains to its mouth in the northern suburbs of Cape Town.
- The complete Palmiet and Steenbras catchments in the south of the Study Area, which flow in a south-westerly direction to the south of False Bay.
- The Breede River, which flows easterly to the Indian Ocean, and of which the Upper and Middle Breede and the Upper Riviersonderend catchments are focus study areas.

The rainfall patching was performed for the region as a whole to ensure that all relevant spatial crossdependencies influence the infilling process. This rainfall extension also included the Upper Breede River and Theewaterskloof Dam catchments.

2. WATER RESOURCES INFORMATION MANAGEMENT SYSTEM

The Water Resources Information Management System (WR-IMS) is a database management system that was developed by DWAF. The rainfall database covered by the WR-IMS comprises 12 748 rainfall stations across southern Africa, of which, the majority are located in South Africa. It also encompasses the WRYM Yield model and systems data with additional storage retrieval capabilities for metadata. The WR-IMS allows for the easy selection of rainfall stations through a GIS interface and includes various data visualizers which allow the rainfall data to be viewed diagnostically, including key statistics of any selected rainfall gauge and cumulative mass plots for particular gauges or a data grid of rainfall data.

Included in the WR-IMS is an interface to the ClassR and PatchR utilities which allow for the identification of outliers and appropriate groupings of source rainfall gauges in order to patch the missing records of selected rainfall gauges.

The WR-IMS was used in this study as the database management tool to patch the monthly rainfall records of rainfall stations located in the Berg, Breede and peripheral river catchments. The methodology followed, using the WR-IMS, was as follows:

- Identification of rainfall stations located inside and nearby the study area.
- Screening and testing of rainfall station records for stationarity.
- The ClassR and PatchR utilities were used to identify suitable groupings of stations, to identify outliers or errors in the rainfall data and to infill missing or suspect rainfall data.

Discussed below is the methodology followed for the selection of rainfall gauges and the screening of the monthly rainfall records.

3. SELECTION AND SCREENING OF MONTHLY RAINFALL RECORDS

With the aid of the WR-IMS all rainfall stations located within or near the study area were selected. Figure 3.1 shows all rainfall stations selected initially. The raw monthly rainfall records up to 2004 contained in the WR-IMS (its limit) were used in this study, and records up to September 2005 for live stations were obtained separately from the South African Weather Bureau (SAWB). As an initial screening, any rainfall gauge was eliminated that had less than 10 years of rainfall record or where the rainfall recorded ended prior to 1940. In addition, rainfall stations with excessive missing data were rejected from the study.

Figure 3.1 Location of all rainfall stations in the WAAS Study Area

Included in the WR-IMS is a patched monthly record for all rainfall gauges over southern Africa. These patched rainfall records were a deliverable of a Water Research Commission Project (Lynch, 2004). The records were infilled using a hierarchy of techniques at a daily level. Although these infilled rainfall records were not used in this study, in instances where rainfall records were suspect or

no nearby rainfall station had a recorded value, the WRC rainfall values were used as a qualitative check on the raw monthly records.

Following this initial screening, tests of stationarity were conducted on all selected rainfall gauges. Cumulative mass plots were examined and rainfall station records were analysed. An example of a typical mass plot for a station is shown in Figure 3.2. The slope indicates some relatively small changes in stationarity, i.e. the slope appears to be steeper for the first half of the record, but in this case, these changes were not considered to be significant enough to reject the station record. Records with significant changes in the slope of the graph were eliminated. A diagnostic grid of the rainfall record was scanned, with the following indicators of errors examined more closely:

- Zero values in the wet months, these were compared to stations nearby.
- Annual totals which were more than double or less than half of the Mean Annual Precipitation of the rainfall station.
- Series of monthly recorded rainfall values of zero.
- Numerous recorded rainfall values in a rainfall station's record that appeared to be rounded to the nearest whole number.

Figure 3.2 Single mass plot of raw data for station 0022792W

The WR-IMS contains a useful tool to assess the overlapping time period for selected groups of stations. Figure 3.3 shows an example of the bar chart indicating the overlapping years and the gaps in the record for a group of stations. Numerous rainfall gauge records had large portions of data that were found to have continuous zeros. Although, these rainfall records were not flagged in the raw rainfall records contained in the WR-IMS, they were flagged prior to using the ClassR and PatchR utilities, as it was found that they significantly influenced the groupings of the rainfall stations.

Once the rainfall stations had been selected and the rainfall data had been screened, ClassR and PatchR were used to group suitable rainfall stations together and infill missing or suspect values.

Figure 3.3 Bar chart showing overlapping years

4. CLASSR AND PATCHR METHODOLOGY

As previously mentioned, the WR-IMS contains an interface to the ClassR and PatchR utilities. The philosophy of patching of rainfall data adopted for this study was to use rainfall stations with sound data quality to infill missing or suspect data in other sound rainfall station records in an iterative process. The importance of performing the patching exercise for the region as a whole was recognised, thus all relevant spatial cross-dependencies are fed into the infilling process.

Initially, patched rainfall records used in previous studies were to be retained and only the extended portions of the records would be patched during this study. However, due to problems in recovering previously used patched rainfall files, the decision was taken to disregard the previously used patched files. Where available, these previously used patched files were compared against the newly created patched rainfall files and few differences between these were noted.

4.1 CLASSR

ClassR is a utility used to group hydro-meteorologically similar rainfall stations together. Given a number of rainfall station records, the CLASSR program performs an outlier analysis which enables the user to make a selection of well-correlated rainfall stations to be used in the patching process. This is achieved in the following way:

- Simple outlier detection by means of scaled absolute difference
- Biplot graphical method employing the Mahalanobis distance measure, and
- Cluster analysis which associates objects by their Euclidian distance.

A number of rainfall gauges in an area are identified and included in the ClassR utility. The software is initially used in performing a rough patch in order to allow the stations to cluster into groups that are closely related. The rainfall stations are then re-selected according to the identified clusters and

ClassR is re-run. This process is repeated until satisfactory results are obtained. The rainfall gauges included in the final cluster to be used in PatchR need to satisfy the following criteria:

- The number of intact years needs to at least 2.5 times greater than the number of rainfall stations included in the cluster.
- The first of the two singular values in the biplot must be at least 10 times larger than the second singular value.
- The percentage of total variance must be high, close to 100%, but at least 80%.
- Outliers are identified, however, the outliers are only flagged if completely confident that the rainfall value is an outlier.

ClassR was re-run if there was non-compliance with any of the above specifications. Once satisfied with the grouping of rainfall stations, the months were grouped into seasons. Up to four "seasons" can be accommodated by PatchR per run, with a minimum of two seasons. Ten different definitions of seasons were identified in the ClassR process for the Berg WMA and these are shown in Table 4.1.

The grouping of rainfall stations, the number of seasons and associated months are used as input to PatchR. The final grouping of rainfall stations for patching is presented in Table 4.2.

Season code	NO.OF MONTHS	Season	Months
1	8	Dry	September - April
1	4	Wet	May - August
	6	Dry	October - March
2	1		April
	5	Wet	May - September
2	9	Dry	September - May
5	3	Wet	June - August
1	7	Dry	October - April
4	5	Wet	May - September
Б	7	Dry	September - March
5	5	Wet	April - August
	7	Dry	September - March
6	2	Wet	April, May
	3	Wet	June - August
7	6	Dry	October - March
ľ	6	Wet	April - September
	8	Dry	September - April
8	1	Wet	May
	3	Wet	June - August
	7	Dry	September - March
9	1	Wet	April
	4	Wet	May - August
	2	Wet	September, October
10	5	Dry	November - March
10	1	Dry	April
	4	Wet	May - August

Table 4.1Seasonal distributions obtained using ClassR

No.	No. of Gauges	Gauges	Start Year	End Year	Number of intact years	Season Code
		0022803W, 0022792W, 0023070W,	1000	0004	10	
BIA	4	0022789A	1929	2004	19	1
BIB	3	0022759W, 0023070W, 0022825W	1927	2004	15	2
B2A	3	0022440W, 0022368W, 0022521W	1900	2004	22	1
C1A	1	0042281A, 0042582W, 0042531A, 00425324	1000	2004	13	1
	4	0042669W 0042588W 0043139W	1303	2004	15	1
C1B	4	0042621W	1943	2004	11	3
C1C	3	0042802W, 0042650W, 0043109W	1931	1985	10	4
		0042250W, 0042281A, 0042582W,				
C1D	4	0042789W	1933	2004	15	4
		0021260W, 0021330W, 0021230W,				
E1A	6	0021441W, 0021655W, 0005605W	1924	1977	26	5
E1B	3	0021204W, 0021325W, 0005545W	1959	1991	19	1
E1C	3	0005664A, 0021325W, 0021204W	1941	1993	9	1
		0005612W, 0005611A, 0005640W,				
E2	5	0005759W, 0005730W	1960	1988	20	1
E3B	3	0021778W, 0021809W, 0006065W	1936	2003	33	6
		0020846W, 0040653W, 0040682W,				
M1A	4	0041417W	1979	2000	11	3
M1B	3	0021230W, 0021260W, 0021441W	1924	1978	33	1
M1C	3	0041388W, 0020846W, 0041347W	1993	2004	8	4
M1D	3	0041533W, 0041388W, 0041279W	1993	2002	7	4
		0062768W, 0062678A, 0041871W,				
M1E	4	0041301W	1970	1988	16	1
M1F	3	0041841W, 0062768W, 0040192W	1993	2004	6	1
MIG	4	0062379A, 0061766W, 0061286W,	1092	2000	10	7
WIG	4	0040675W	1903	2000	10	1
M1H	4	0041060W	1937	1965	10	1
M1I	3	0061286W, 0040875W, 0020791W	1988	2003	7	8
	-	0061298W, 0040875W, 0041279W,				
M1J	4	0041347W	1973	2003	23	1
		0062379W, 0041060W, 0041713W,				
M2A	5	0041836W, 0041347A	1941	1975	15	1
		0040604W, 0041347A, 0041417A,				
M2B	4	0040682W	1949	1983	18	1
	_	0062444W, 0040604W, 0040682W,				
M2C	5	0041417W, 0040653W	1914	2000	23	1
M2D	3	0041681W, 0041713W, 0041279W	1970	1982	9	1
MOE	4	0061736W, 0061766W, 0061256W,	1064	1001	10	0
	4	0020641W	1904	1901	12	9
P1A	4	0005849W	1955	1972	10	1
P1B	3	0005829W 0006223W 0006038A	1975	1988	5	1
P1C	3	0006051A, 0006167W, 0006192W	1949	1991	25	1
	Ű	0006039W. 0006167W. 0005759W.	1010	1001	20	
P1D	4	0005730W	1959	1988	18	3
P2	3	0006214W, 0006332W, 0022539W	1932	1995	37	1
P3	3	0022504W, 0022440W, 0022539W	1974	1990	7	1
V1A	3	0042358W, 0042355W, 0042227W	1984	2004	10	7
		0042415W, 0042357A, 0042227W,				
V1B	4	0042326W	1929	1961	19	4

 Table 4.2
 Final grouping of rainfall gauges for patching

No.	No. of Gauges	Gauges	Start Year	End Year	Number of intact years	Season Code
V1C	3	0042227W, 0042355W, 0042233W	1967	1986	6	1
V1D	3	0042357W, 0042257W, 0042198W	1968	1982	8	1
		0042011W, 0041871W, 0041713W,				
V1E	4	0041279W	1964	1977	9	1
		0022005W, 0022069W, 0021825W,				
W1A	4	0021860A	1961	1974	6	4
		0021823W, 0022038W, 0022113W,				
W1B	4	0022004W	1931	1985	34	8
		0022205A, 0022204W, 0021795A,				
W1C	4	0021860A	1943	1970	21	10
W1D	3	0021878B, 0021816A, 0022004W	1974	1985	10	1
W1E	3	0021879W, 0022005W, 0022038W	1988	2003	5	4

4.2 PATCHR

PatchR uses a linear regression in combination with expectation maximization to infill missing or suspect values which have been flagged in the input rainfall record. PatchR performs a multiple patch on all rainfall stations contained within a group; the rainfall sequnece is lengthened to the earliest and latest date that occurs in the input rainfall records. This process of infilling and extension of rainfall sequences is done as an iterative procedure.

PatchR was typically used in two or more passes with problems identified in the first pass, and final patching conducted in the second pass. The criteria that the PatchR output had to meet are given below:

- As a rule of thumb, the number of iterations performed by the software needed to be less then 25,; if more than 15 iterations occurred, the rainfall station grouping was revisited as a conservative check.
- In the B-matrix of statistics, values smaller than 0.5 and greater than 1.5, were not accepted. The ideal bracket was between –0.3 and 1.0.

Outliers were identified from the PatchR output once the above criteria were met. These outliers were flagged in the raw monthly rainfall records and PatchR was re-run to create the final patched file. For the purposes of this study, all extended rainfall sequences were deleted and the resulting patched sequence had the same period of record as the original raw data file. The MAP and the start and end year for the trimmed sequence were checked and corrected where necessary.

Using the above methodology, 98 rainfall station records in the Berg WAAS study area were patched. Figure 4.1 illustrates the location of these rainfall stations and the station details are included in Table 4.3. In patching the rainfall records for the Berg Catchment various problems were encountered. These problems are discussed in detail below. Following this, the rainfall stations patched in each of the other sub-catchments are detailed.

Figure 4.1 Location of patched rainfall stations in the Berg WAAS study area

11.11

18002

win

	Gauge						MAP	SD	
No.	number	Name	Latitude	Longitude	Start	End	(mm)	(mm)	CV
1	0005545 W	Somerset west - dyn	-34° 5'	18°49'	1958	1995	592	116	0.20
2	0005605 W	Somerset west - pol	-34° 5'	18°51'	1927	1977	627	144	0.23
3	0005611 A	Steenbrasdam 5/611	-34°11'	18°51'	1955	2003	967	182	0.19
4	0005612 W	Steenbras no ii - rsv	-34°13'	18°52'	1954	2004	1242	225	0.18
5	0005640 W	Steenbras no 111 - rsv	-34°11'	18°52'	1959	2004	981	180	0.18
		Somerset west	0.40.41	100501		1000	107		0.40
6	0005664 A		-34° 4'	18°53	1941	1968	487	238	0.49
/	0005730 W	Steenbras no iv - rsv	-34°10'	18°55	1955	1994	1159	199	0.17
8	0005759 W	Steenbras no v - rsv	-34° 9'	18°56	1955	1987	927	1/1	0.18
9	0005771 W	Bettys bay	-34°21'	18°56'	1966	2004	1056	196	0.19
10	0005829 W		-34°19'	18°58	1974	2004	1232	238	0.19
11	0005849 W	Steenbras no vii - rsv	-34° 9'	18°59'	1955	1985	1036	186	0.18
12	0005880 W	Morning star	-34°10'	19° 1'	1927	1972	1067	216	0.20
13	0006038 A	Elgin (nivv)	-34° 8'	19° 2'	1962	1987	1001	216	0.22
14	0006039 W	Grabouw - bos	-34° 9'	19° 2'	1928	2004	1018	192	0.19
15	0006051AW	Kleinmond - pol	-34°21'	19° 2'	1948	1993	692	173	0.25
16	0006065 W	Nieuweberg - bos	-34° 4'	19° 3'	1927	2004	1595	419	0.26
17	0006167 W	Highlands - bos	-34°17'	19° 6'	1938	1991	928	169	0.18
18	0006192 W	Lebanon - bos	-34°11'	19° 6'	1938	1991	677	139	0.21
19	0006214 W	Rus - en - vrede	-34° 4'	19° 7'	1932	1994	820	229	0.28
20	0006223 W	Haasvlakte - bos	-34°13'	19° 8'	1971	2004	678	161	0.24
21	0006332 W	Rustfontein	-34° 2'	19°12'	1932	2004	794	215	0.27
22	0020841 W	Mamre - col	-33°31'	18°28'	1964	1980	369	117	0.32
23	0020846 W	Atlantis	-33°36'	18°29'	1979	2004	451	89	0.20
24	0021105 W	Koeberg	-33°43'	18°34'	1967	1989	463	112	0.24
25	0021204 W	Bellville - sar kwekery	-33°54'	18°37'	1948	1990	523	133	0.26
26	0021230 W	Altydgedacht	-33°50'	18°38'	1927	2004	589	112	0.19
27	0021260 W	Durbanville - pol	-33°50'	18°39'	1927	1992	600	129	0.21
28	0021325 W	Kuilsrivier	-33°55'	18°41'	1949	1993	630	157	0.25
29	0021330 W	Eersterivier - bos	-34° 1'	18°41'	1927	1979	520	116	0.22
30	0021441 W	Kraaifontein - bos	-33°51'	18°45'	1927	1978	527	114	0.22
31	0021591 A	Elsenburg	-33°51'	18°50'	1963	1986	596	141	0.24
32	0021655 W	Stellenbosch	-33°56'	18°52'	1927	1985	719	140	0.19
33	0021778 W	Jonkershoek - bos	-33°58'	18°56'	1927	2004	1076	198	0.18
34	0021795 A	Bellevue (niww)	-33°45'	18°57'	1941	1987	944	198	0.21
35	0021809 W	Jonkershoek - 2d	-33°59'	18°57'	1936	2004	1463	278	0.19
36	0021823 W	Paarl	-33°43'	18°58'	1927	2004	895	202	0.23
37	0021825 W	Paarl - agr	-33°45'	18°58'	1959	1997	915	204	0.22
38	0021860 A	Bien donne (nivv)	-33°50'	18°59'	1940	1987	812	166	0.20
39	0021878BW	Wellington - mun	-33°38'	19° 0'	1963	1987	628	134	0.21
40	0021879 W	Wellington-mun	-33°39'	19° 0'	1987	2004	692	131	0.19
41	0021900 W	Jonkershoek - 3m	-34° 0'	19° 0'	1971	1990	2050	494	0.24
42	0022004 W	Jonkershoek - 3m	-33°35'	19° 1'	1942	1969	878	183	0.21
43	0022005 W	Welbedacht	-33°35'	19° 1'	1931	2003	623	125	0.20
44	0022029 W	Jonkershoek - virgin pea	-33°59'	19° 1'	1974	1998	2276	626	0.27
45	0022030 W	Jonkershoek - jonkersnek	-34° 0'	19° 1'	1972	1998	3149	600	0.19
46	0022038 W	Vrugbaar	-33°38'	19° 3'	1927	2004	763	147	0.19
47	0022069 W	Onverwacht	-33°39'	19° 3'	1927	1993	755	161	0.21
48	0022113 W	La motte - bos	-33°53'	19° 4'	1927	2002	838	215	0.26
49	0022113 W	La motte - bos	-33°53'	19° 4'	1927	2003	835	215	0.26
50	0022116 W	Driefontein - bos	-33°56'	19° 4'	1927	1960	1842	402	0.22

Table 4.3 Final statistics of pate	ched rainfall station records
------------------------------------	-------------------------------

	Gauge						MAP	SD	
No.	number	Name	Latitude	Longitude	Start	End	(mm)	(mm)	CV
51	0022143 A	La motte - bos	-33°53'	19° 5'	1961	2004	1985	457	0.23
52	0022204 W	Franschhoek	-33°55'	19° 7'	1941	1969	880	180	0.20
53	0022368 W	Swartvlei	-33°37'	19°14'	1932	1976	1009	269	0.27
54	0022440 W	Stettynskloof	-33°50'	19°15'	1952	2004	916	343	0.37
55	0022504 W	Welgegund	-33°54'	19°17'	1932	2000	760	224	0.29
56	0022521 W	Rawsonville - pol	-33°41'	19°19'	1927	2004	613	212	0.35
57	0022539 W	Villiersdorp	-34° 0'	19°18'	1927	2004	623	163	0.26
58	0022759 W	Worcester - tnk	-33°39'	19°26'	1927	2004	257	79	0.31
59	0022789 A	Veldreserwe	-33°39'	19°27'	1942	1987	237	81	0.34
60	0022792 W	Brandvlei dam	-33°42'	19°27'	1938	1978	265	103	0.39
61	0022803 W	Doornrivier	-33°53'	19°27'	1929	2004	247	82	0.33
62	0040604 W	Hopefield - pol	-33° 4'	18°21'	1927	2004	318	81	0.26
63	0040653 W	The towers	-33°24'	18°23'	1927	2004	482	106	0.22
64	0040682 W	Darling - pol	-33°23'	18°23'	1949	2004	462	101	0.22
65	0040875 W	Vlakvlei	-33° 5'	18°30'	1955	2004	314	90	0.29
66	0041060 W	Burgherspost	-33°30'	18°32'	1927	1975	559	131	0.23
67	0041279 W	Moorreesburg - pol	-33° 9'	18°40'	1964	2004	385	98	0.26
68	0041301 W	Koringberg	-33° 1'	18°40'	1967	1997	372	99	0.27
69	0041347 A	Langgewens (wrs)	-33°17'	18°42'	1930	1988	395	83	0.21
70	0041347 W	Langgewens - agr	-33°17'	18°42'	1958	2004	396	94	0.24
71	0041388 W	Malmesbury e	-33°28'	18°43'	1993	2004	366	94	0.26
72	0041417 A	Malmesbury	-33°27'	18°44'	1927	1983	446	113	0.25
73	0041417 W	Malmesbury - tnk	-33°27'	18°44'	1927	2000	463	117	0.25
74	0041533 W	Lelyfontein	-33°23'	18°48'	1988	2004	391	92	0.24
75	0041681 W	Riebeek - wes - pol	-33°21'	18°52'	1969	1997	577	140	0.24
76	0041684 W	Kloovenburg	-33°24'	18°53'	1927	1964	688	138	0.20
77	0041713 W	Riebeek - kasteel - mun	-33°23'	18°54'	1937	1982	660	156	0.24
78	0041836 W	Rondeheuwel	-33°27'	18°58'	1941	1978	465	102	0.22
79	0041871 W	Porterville - mun	-33° 1'	19° 0'	1958	2004	496	101	0.20
80	0042011 W	Saron - col	-33°11'	19° 1'	1964	1978	444	122	0.27
81	0042166 W	Mont pellier	-33°16'	19° 7'	1927	1950	537	105	0.20
82	0042227 W	Tulbagh - pol	-33°17'	19° 9'	1927	2004	474	114	0.24
83	0042250 W	Avalon	-33°10'	19° 9'	1984	2004	1127	294	0.26
84	0042257 W	Obiqua - tnk	-33°17'	19° 9'	1961	2004	445	125	0.28
85	0042326 W	Kluitjieskraal - bos	-33°26'	19°11'	1927	2004	645	148	0.23
86	0042357 A	La plaisante	-33°27'	19°12'	1929	1987	568	153	0.27
87	0042357 W	La plaisante	-33°27'	19°12'	1927	1981	562	161	0.29
88	0042415 W	Waverley mills	-33°25'	19°14'	1927	1960	616	110	0.18
89	0042582 W	Bokveldskloof	-33°12'	19°20'	1933	2004	685	193	0.28
90	0043139 W	Klondyke	-33°19'	19°35'	1952	2003	586	142	0.24
91	0062444 W	Piketberg - pol	-32°55'	18°46'	1927	2004	444	104	0.23
92	9112301				1966	1988	984	241	0.24
93	9158101		-34°11'	18°51'	1928	1988	955	201	0.21
94	9158102		-34°12'	18°52'	1928	1988	1276	241	0.19
95	9158104		-34°10'	18°56'	1928	1988	1083	210	0.19
96	9995017		-34° 8'	19° 8'	1963	1988	1013	222	0.22
97	90200004				1936	1986	2116	529	0.25
98	90300001				1968	1988	1022	247	0.24

5. RAINFALL PATCHING RESULTS

5.1 PROBLEMS ENCOUNTERED

Various problems were encountered during the patching process for the Berg WMA, which are discussed below. These problems do not differ from those commonly experienced by practitioners when using rainfall records.

In the mountainous areas of the Berg WMA, such as the Jonkershoek, Upper Berg and Palmiet areas, there are few rainfall stations. The rainfall stations, which are located there, have short records and contain numerous missing or suspect values. Thus, patching of these rainfall stations proved difficult, as no sound rainfall gauges with similar statistics exist in the area. After various iterations, the patched rainfall files ultimately produced reasonably representative rainfall for mountainous zones, however, they do not cover the entire time period of interest.

Another problem encountered with the rainfall stations in the mountainous areas was that ClassR and PatchR are unable to accommodate monthly rainfall values larger than 999.9 mm. A monthly total as large as this in the Western Cape is unusual. A few of these appeared in the rainfall records, and those identified were carefully scrutinized; however, it was concluded that they were genuine records. To solve this problem, the rainfall values larger than 999.9 mm were replaced with 999.99 mm in the raw monthly rainfall records. The ClassR and PatchR utilities were then used, and once the final patched file had been obtained, the monthly rainfall values larger than 999.9 mm were replaced with their original value in the raw rainfall record.

5.2 BERG RIVER CATCHMENT

The stations with patched rainfall records in the Berg catchment are illustrated in Figure 5.1. Thirtyseven rainfall stations were patched in total. Twenty of these stations were used in the previous WCSA study and 17 new stations have been added for the WAAS.

Figure 5.1 Location of patched rainfall stations in the Berg catchment

5.3 EERSTE, LOURENS AND SIR LOWRY'S PASS CATCHMENTS

The stations with patched rainfall records in the Eerste, Lourens and Sir Lowry's Pass catchments are shown in Figure 5.2. There are 21 patched stations in total; 12 of these stations were used in the previous WCSA study and 9 new stations have been added in the current study.

Figure 5.2 Location of patched rainfall stations in the Eerste, Lourens and Sir Lowry's Pass catchments

5.4 DIEP RIVER

The stations with patched rainfall records in the Diep River catchment are shown in Figure 5.3. There are 19 patched stations in total; 11 of these stations were used in the previous WCSA study and 8 new stations have been added in the current study.

Figure 5.3 Location of patched rainfall stations in the Diep River catchment

5.5 PALMIET AND STEENBRAS

The stations with patched rainfall records in the Palmiet and Steenbras catchments are shown in Figure 5.4. There are 20 patched stations in total; 12 of these stations were used in the previous WCSA study and 8 new stations have been added in the current study.

Figure 5.4 Location of patched rainfall stations in the Palmiet and Steenbras catchments

The stations with patched rainfall records in the Breede and Riviersonderend catchments are shown in Figure 5.5. There are 26 patched stations in total; 9 in the Breede and 15 in the Riviersonderend. Nineteen of these stations were used in the previous WCSA study and 7 new stations have been added in the current study.

Figure 5.5 Location of patched rainfall stations in the Breede and Riviersonderend catchments

6. DEVELOPMENT OF AN UPDATED MEAN ANNUAL RAINFALL MAP FOR THE SOUTH-WESTERN CAPE

6.1 INTRODUCTION

Reliable and realistic estimates of long term mean annual rainfall are important inputs to distributed hydrological and geohydrological modelling, determination of water requirements and other aspects of surface and groundwater assessments. This information has in the past been obtained from the 1:250 000 rainfall map series of South Africa that was published in 1965 by the Department of Water Affairs and Forestry. In 1989 the Computing Centre for Water Research (CCWR) produced a new mean annual rainfall (MAP – mean annual precipitation) map as part of a Water Research Commission project (Dent *et al*, 1989). The map was produced by developing regression models to relate continuous physiographic data to point (station) measurements of MAP, and using these models to automate production of MAP isohyets for South Africa, Lesotho and Swaziland. The map was produced as a series of transparent 1:250 000 map overlays, and electronically as a 1 minute x 1 minute grid of mean annual rainfall values. The map was included in the *South African Atlas of Agrohydrology and -Climatology* (Schulze, 1997), and an updated version of the map was released in 2003.

To automate the generation of the 1 minute x 1 minute rainfall surface, Southern Africa was divided into 34 rectangular areas. An iterative procedure was used to develop regression equations for each of these areas and to "edge-match" the surface along the boundaries of these areas. Two rectangular areas (Areas 1 and 9) and two sets of regression equations were used to develop the rainfall surface in the South-western Cape, in an area that includes the catchments of the Berg River, the Breede River, the Cape Town Basin, and the Overberg coastal catchments. The rainfall surface in this region has been used to provide estimates of MAP for hydrological modelling of the catchments of the Breede River (BRHS and BRBS), and the Berg, Palmiet, Eerste, Lourens Rivers (WCSA). During these studies, it became apparent that the rainfall surface contains a number of anomalies which include under-estimates of MAP in most of the mountain catchments, and inadequate representation of the variability of MAP over the complex topography of the Boland and Overberg regions.

The anomalies in the Western Cape portion of the 1 minute x 1 minute rainfall surface were considered to be serious enough to warrant the re-generation of a more realistic surface for use in the WAAS hydrology. Based on a review of the methods and rainfall station data that were used to generate the 1 minute x 1 minute surface, the anomalies were attributed to a range of factors, including:

- A lack of rainfall stations with long records in mountain catchments,
- The relatively coarse resolution of the 1 minute by 1 minute altitude grid (about 1.6 km square in the Western Cape);
- Inaccurate rainfall station coordinates. Until recently, the rainfall station coordinates in the Western Cape were recorded to the nearest minute. This means that the recorded position could be up to 800 m removed from the actual position of the station. Due to the steep topography in the Western Cape Mountains, a horizontal shift of this order could be associated with a change in altitude of hundreds of meters;
- It is not clear whether the barrier effect of the Western Cape fold mountains was adequately represented in the regression equations that were developed for the region. It was felt that the

The intention was to address these issues by utilising more accurate rainfall station position information, a high resolution terrain model, incorporation of additional stations in certain mountain catchments, introduction of barrier distance as an independent variable to derive a new rainfall surface.

6.2 GENERAL APPROACH

The approach that was followed to develop the updated rainfall surface is similar to the one used by Dent *et al* to generate the original 1 minute x 1 minute surface, i.e. development of a regression model that relates MAP to one or more physiographic variables, followed by interpolation of residuals, and combination of the two surfaces to form a composite mean annual rainfall surface. A detailed discussion and motivation for the use of regression techniques to relate MAP to physiographic variables, rather than the use of simpler, direct interpolation methods, can be found in Dent et al. The current approach differed from the CCWR approach in two main aspects, namely:

- The 1 minute x 1 minute surface is comprised of about 34 rectangular regions. Separate regression models were developed for each of these regions. (The area covered by the current revision falls within two regions.) Discontinuities at regional boundaries were then smoothed out by iterative adjustment of regression expressions on either side of the boundaries, and shifting of some boundaries to avoid areas with highly variable topography. For the current assignment, an attempt was made to improve on this approach by delineating three irregularly shaped climatically homogenous regions in the South-western Cape, and developing separate regression models for each of these areas. However, when compared to an approach where one model was developed for the South-western Cape, the multi-model approach did not result in an overall improvement in goodness-of-fit and caused unacceptably large discontinuities along regional boundaries. A single regression model was therefore adopted for the South-western Cape.
- The residual component of the 1 minute x 1 minute surface was derived by direct interpolation of residuals at station points. For the current assignment, a semi-variogram model was developed and used to weigh the influence of residual values at surrounding stations on estimates of residuals at interpolated grid points. This approach allows for the statistical modelling of "unexplained" local spatial autocorrelation that remain after the regression.

The physiographic variables that were considered for inclusion into the regression equations were altitude, aspect, rain-bearing wind direction, exposure, roughness and continentality. The variables are discussed in more detail in Section 6.4.

6.3 SELECTION OF RAINFALL STATIONS

The selection of rainfall stations for use in the surface model had to be done with care, as the inclusion (or rejection) of a single station in an area where few other stations are present, could make a significant difference to the interpolated surface. The process that was followed to select a set of 321 stations for inclusion in the South-western Cape rainfall surface was as follows:

- A candidate set of stations was compiled by using data from the following databases:
 - Agricultural Research Council (ARC)
 - CSIR. This dataset provided rainfall records for 14 research stations in mountain catchments, and was considered to be particularly important for improving estimates of MAP at higher altitudes.

- South African Weather Service (SAWS) with accurate coordinates. At the time of this work, the SAWS were re-establishing precise coordinates of their stations by means of a GPS survey. Accurate coordinates were available for 115 SAWS stations in the South-western Cape.
- Water Resource Information Management System (WRIMS). The WRIMS database contains a combination of SAWS and ARC stations. Station coordinates are provided to the nearest minute.
- The quality of the rainfall records was evaluated and a subset of stationary, patched records was selected as candidates for use in the rainfall surface. (Refer to Section 3)
- Stations with record lengths of less than 20 years were removed from the candidate set.
- ARC and SAWS stations with inaccurate coordinates (nearest minute), were weeded by determining the maximum ground elevation difference in a 200m diameter circle around the recorded station position. Elevations were determined from the 90m x 90m SRTM DEM. Stations with elevation differences of more than 40m were discarded.
- Where one or more stations plotted within 400m of an accurately coordinated SAWS station, the former were discarded.
- The remaining set of ARC and SAWS stations with inaccurate coordinates contained numerous instances of two or more stations plotting on the same position. The station with the longest record was retained, and the "duplicates" were removed.

The distribution of the 321 selected stations is shown in Figure 6.1. The stations are listed in Appendix A.

Figure 6.1 Distribution of Selected Rainfall Stations

6.4 PHYSIOGRAPHIC DATA SETS

6.4.1 Selection of Independent Variables

The physiographic variables that were considered for inclusion into the regression equations were altitude, aspect, rain-bearing wind direction, exposure, roughness and continentality. These are the

same variables that were considered for the development of the earlier CCWR and Agro-Hydrology Atlas MAP surfaces. It was felt that this collection of variables was diverse enough to describe most of the major factors that influence rainfall distribution in the Western Cape. It was also decided to avoid non-linear transformation of these variables to keep the ratio of independent variables to data points as low as possible, and also to avoid unstable predictions in areas with sparse distributions of rainfall stations.

6.4.2 Altitude

The NASA Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) was used to provide altitude data and to derive most of the secondary physiographic variables that were required for the rainfall surface modelling (see Figure 6.2). The SRTM data is available for over 80% of the globe, and have a resolution of 90m at the equator, and about 100m in the South-western Cape.

Figure 6.2 Altitude

6.4.3 Continentality

In the South-western Cape, mean annual rainfall tends to be higher in the coastal areas than further inland. This effect is most notable within about 300 km of the coast, and has been documented by Whitmore (1989) and others. Continentality (distance from the coast) was derived by calculating the euclidean distance (in km) of the centre-points of a grid of 100m x 100m cells from the coastline. The resultant dataset is shown in Figure 6.3.

6.4.4 Roughness

Roughness of terrain causes updraughts and turbulence which may affect rainfall (Dent, 1989). A roughness index was derived by calculating the standard deviation of altitudes in a 1km x 1km mask, i.e. by evaluating 100 grid cell values at a time. The roughness index values are shown in Figure 6.4.

Figure 6.4 Roughness Index

6.4.5 Aspect and Rain-bearing Wind Index

Winter rainfall in the South-western Cape typically occurs in the form of a procession of cold fronts that sweep over the region from the west. Rainbearing wind directions vary from north to west to south, peaking in a north-westerly direction. An attempt was made to account for this effect by introducing a rain-bearing wind index to the regression model. The index was based on a weighted classification of aspect. Aspect is defined as slope direction, or the compass direction a hill faces. It can be calculated from a DEM by identifying the steepest downslope direction from each cell to its neighbours. The index dataset was developed as follows:

- The 100m resolution DEM was used to calculate aspects.
- The aspect grid was smoothed by calculating the mean of a 1km x 1km neighbourhood;
- The smoothed aspect grid was reclassified by assigning rain-bearing index values to 8 aspect sectors as shown in Table 6.1 and on Figure 6.5.

Aspect	Index
NNW – NNE	5
NNE – ENE	1
ENE – ESE	0
ESE – SSE	1
SSE – SSW	5
SSW – WSW	5
WSW – WNW	7
WNW – NNW	10

Table 6.1 Rain-bearing Wind Index

Figure 6.5 Rain-bearing Wind Index

6.4.6 Exposure

Terrain that is exposed above the surrounding countryside tends to receive more rainfall than less exposed areas (Hutchinson 1968, Hughes 1982). An exposure index was derived by calculating a "normalised" elevation as follows:

Exposure Index = (Point elevation - average neighbourhood elevations) / (standard deviation of neighbourhood elevations)

A 10km x 10km neighbourhood was used to determine the exposure index. The exposure index values are shown in Figure 6.6.

Figure 6.6 Exposure Index

6.4.7 Distance from Barrier Features

The Cederberg, Koue Bokkeveld, Du Toitskloof and Langeberg mountain ranges are arranged in an arc about 60 to 80 kilometres inland from the coast. These mountains, and the Drakenstein and Peninsula mountain ranges in the south-west form barriers that cause uplift and precipitation. This effect was introduced to the modelling by digitising the spines of the mountain ranges, and calculating euclidean distances (in km) of the centre-points of a grid of 100m x 100m cells from the barrier features. The spatial effect is illustrated on Figure 6.7.

Figure 6.7 Barrier Distance

6.5 REGRESSION ANALYSIS

The set of candidate physiographic variables and the measured point MAP values were used to develop a regression surface that explains a portion of the variability of rainfall in the region.

Values of the physiographic (independent) variables were determined at each of the rainfall station locations by superimposing the station points on the physiographic variable rasters, and transferring the raster cell values to the rainfall station point shapefile (Appendix A). To minimise bias in the final composite surface, two randomly selected subsets of rainfall stations were used to develop the regression surface and the residual surface. It was not possible to divide the rainfall stations into two completely separate subsets, as it would not have been possible to maintain adequate sample sizes. As a compromise, the stations were divided into three equally sized, randomly selected subsets A, B and C. Subsets A and B (215 stations in total) were used to develop the regression surface, while B and C were used to develop the residual surface. One of the consequences of this decision was that the final composite surface would not be "shrink-fitted" to the complete set of measured MAPs. Forward stepwise regression was used to select independent variables and to construct the deterministic model. A maximum p-value1 of 0.01 was used to determine entry of an independent variable into the regression equation. This threshold resulted in the selection of roughness, continentality, altitude and barrier distance as predictors of MAP and an R2 value of 0.41, indicating that the regression equation explained about 41% of the spatial variance ("drift") of MAP. By relaxing the p-value threshold to 0.02, it was possible to include the exposure index (but not the rain-bearing wind index) into the regression equation, but the marginal improvement of the R2 value to 0.42 indicated that this was not warranted. The final selection of independent variables and estimates of the regression coefficients are shown in Table 6.2. The final selection of four independent variables is

¹ The p-value provides an indication of the statistical significance of an independent variable's predictive capability.

well within the guideline that states that in order to avoid an unstable regression; one should have at least 10 to 20 times as many observations as there are variables. Descriptive statistics for all of the steps in the forward stepwise selection procedure are shown in Appendix B.

Source	Coefficient	Std Frror	Std Beta	-95% C.L	+95% C.L	Т	P-value
Intercept	710.037	41.919		627.401	792.673	16.938	0.000
Roughness	3.363	1.035	0.200	1.322	5.404	3.248	0.001
Continentality	-3.786	0.720	-0.377	-5.205	-2.366	-5.256	0.000
Altitude	0.286	0.104	0.208	0.082	0.490	2.759	0.006
Barrier Dist.	-5.271	0.675	-0.440	-6.602	-3.940	-7.807	0.000

Table 6.2 Regression Coefficients

6.6 THE RESIDUAL SURFACE

The regression equation was used to calculate predicted values of MAPs at each of the station points. Residuals were then calculated by subtracting predicted values from measured MAPs. The distribution of residuals (plotted on a normal probability scale) is shown in Figure 6.8. As can be expected, the distribution of the residuals indicates that there is still a fair amount of unexplained drift in the residuals. At the high end of the plot, there are four stations that at first glance appear to be outliers. An inspection of these stations showed that one of the stations is located in Newlands, one in the Jonkershoek valley, and two in the catchment upstream of the new Berg River Dam. As all of these stations have long record periods (>45 years), are considered to be of good quality, and are located in very high rainfall areas, it was decided not to exclude these stations, and to let their residual values influence the surface in these areas.

To account for some of the remaining drift in the residuals, it was decided to construct the residual surface with a kriging method, rather than with a non-statistical interpolation method. Ordinary kriging can be used to model spatial trends, and also takes the effect of spatial auto-correlation into account. The method would for example tend to group correlated residuals on the same side of a physiographic barrier for use in interpolation, rather than interpolating between uncorrelated residuals that are located on both sides of such a barrier. The effect of decreasing autocorrelation with increasing distance is simulated by means of a semi-variogram model. The semi-variogram model that was fitted to the residuals of subsets B and C is shown in Figure 6.9. The model has a sill value2 of about 170 km.

² The sill value is the distance ("range") at which the semi-variogram levels off. Pairs of observations that are further apart than the range, are not spatially auto-correlated.

Figure 6.8 Distribution of Residual Values

Figure 6.9 Semi-variogram Fitted to Residuals

Residual values are interpolated between groups of station points, without the smoothing effect of a spatially continuous variable. The resultant surface is therefore composed of angular planes, as shown in Figure 6.10, and can introduce discontinuities into the final composite surface. This effect was reduced by passing a 5km x 5km smoothing filter over the residual surface. The smoothing effect is illustrated in Figure 6.10.

Figure 6.10 Unsmoothed (left) and Smoothed (right) Residual Surfaces

6.7 THE COMPOSITE SURFACE

The interpolated regression and residual surfaces were added together (summed) to produce a composite surface. Predicted MAPs over a very small part (0.7%) of the modeled area were less than 60 mm per year and negative in some instances. These values were set equal to 60 mm. The maximum predicted value was 3 238 mm in the Jonkershoek valley, which is of the same order as the maximum measured MAP of 3 348 mm at a research station in the same valley. The characteristics of the revised surface and a comparison of the revised surface and the Atlas surface are presented in Section 6.8.

6.8 DISCUSSION AND CONCLUSIONS

The new composite rainfall surface and the 2003 Agro-Hydrology Atlas are shown side-by-side in Figure 6.11 so that a visual comparison can be made.

Figure 6.11 Comparison of the Revised MAP Surface (Top) and the Atlas Surface (Bottom)

Figure 6.12 shows the arithmetic difference (Revised minus Atlas) between the two surfaces. It can be seen that the revised surface consistently predicts higher MAPs in the higher lying areas, and predicts lower values in the West Coast, Overberg and Little Karoo areas.

Figure 6.12 Difference (mm) Between the Revised MAP Surface and the Atlas Surface

The revised rainfall surface was used to determine predicted values at each of the 321 stations (subsets A,B and C). These values were subtracted from the measured MAP values to determine prediction errors as a percentage of measured values. The comparison indicated that 75% of the predictions differ by less than 20% from the measured MAP values, and 65% of the predictions differ by less than 10%. The distribution of these errors is shown in Figure 6.13.

Figure 6.13 Distribution of Prediction Errors

7. WAY FORWARD

The rainfall data analysis undertaken for the Berg WAAS has provided rainfall sequences that will be used to generate catchment rainfall files for the purposes of hydrological modelling. The methodology for this process will be included in the catchment modelling reports.

APPENDIX A : RAINFALL STATIONS

Station	Length Number (Years)	MAP	Wind Index	Rough- ness	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
Aan de Doorns, Worcester	37 20043	251.0	2	7.9	9 75.9	220.0	-0.15	28.95	бВ
ALBERTINIA - POL	81 0011132W	438.1	4	5 11.0	5 17.6	183.0	0.15	25.87	' A
ALTYDGEDACHT	82 0021230W	571.0	4	5 13.5	5 15.0	183.0	0.14	23.69	в
ATLANTIS	86 0020846W	133.0	4	5 3.1	1 8.3	121.0	0.18	39.32	2 B
AVALON	22 0042250W	1101.0	4	62.2	2 86.0	529.0	-0.77	9.46	бA
BELLVILLE	32 0021234W	118.4	4	5 9.0	5 13.8	76.0	-0.13	18.83	вВ
BELLVILLE - BOS	49 0021235W	466.8	4	5 2.0	5 17.1	61.0	-0.27	21.06	бВ
Bethlehem	15 20091	1531.0	10	91.2	7 24.5	376.0	-0.57	3.93	3 A
BETTYS BAY	52 0005771W	1097.0	4	5 41.5	5 0.2	34.0	-1.28	29.53	3 A
BIEN DONNE (NIVV)	50 0021860A	811.5	4	5 5.1	33.1	141.0	-0.59	11.14	A
BIEN DONNE PP	8 30006	783.0	1	2.0	5 32.2	119.0	-0.78	10.24	A
BIZWENI	100 0005605A	653.0	4	5 5.5	5 3.6	38.0	-0.64	11.24	A
BIZWENI	29 0005635W	336.7	5	5 9.8	3 4.7	46.0	-0.74	9.63	вВ
BLYDSKAP	70 0007699W	384.2	5	6.4	4 61.1	157.0	-0.65	41.46	бA
BOKVELDSKLOOF	71 0042582W	685.0	5	5 13.9	99.3	1030.0	-0.65	3.71	Α
BONFOI	4 30081	811.0	5	5 24.3	3 15.9	171.0	0.14	13.30) A
BONNIEVALE - SKL	58 0024146W	268.3	5	5 14.4	4 69.2	145.0	-0.68	12.62	2 A
BONTEBOKPARK	44 0008813W	526.7	5	5 16.7	7 43.4	110.0	0.24	9.10) В
BONTEBOKSKLOOF	47 0009214W	49.4	5	5 18.4	4 41.0	213.0	0.08	10.04	B
BOSKLOOF	71 0007263W	464.0	5	5 23.0	5 29.8	128.0	-0.80	49.56	бA
BOTHASHALT	33 0022471W	826.5	4	5 47.8	8 49.7	543.0	-1.24	6.36	δA
BREDASDORP ZOET. VALLEI	73 0002885A	468.8	4	5 3.4	4.9	12.0	-0.17	92.41	В
BULSHOEK - IRR	91 0107510W	170.4	4	5 42.7	7 46.6	90.0	-1.34	57.78	8 A
BURGHERSPOST	48 0041060W	559.4	() 35.5	5 17.8	183.0	-0.05	51.91	Α
CALEDON - TNK	24 0006734W	483.0	1	15.1	1 22.8	236.0	-0.46	28.60) A
CAMPAMENTO	34 0021326W	562.7	7	3.9	9 15.6	69.0	-0.29	22.30) В
CAPE TOWN - CITY HOSPITA	81 0020744W	246.6	1	14.7	7 0.2	16.0	-0.58	6.30) A
CAPE TOWN - FIRE STATION	88 0020776W	558.3	1	33.3	3 2.6	53.0	-0.50	3.68	8 B
CAPE TOWN - GREEN POINT	108 0020714W	515.0	4	5 4.9	9 0.6	30.0	-0.50	6.22	2 A
CAPE TOWN - GROOTE SCHUU	37 0020838FW	1181.0	4	5 4.1	l 6.7	45.0	-0.23	5.94	A
CAPE TOWN - KLOOFSTREET	118 0020746CW	835.4	1	15.8	3.1	28.0	-0.66	2.73	вВ
CAPE TOWN - MAITLAND - C	99 0021055W	491.0	4	5 2.7	7 6.0	15.0	-0.27	10.32	2 A
CAPE TOWN - SEA POINT -	114 0020685W	299.2	10) 15.5	5 0.1	23.0	-0.65	4.65	бА

Station	Length Number (Years)	MAP	Wind Index	l r	Rough- iess	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
				_						
CAPE TOWN SLANGKOP	85 0004549W	47.8	\$	7	18.9	2.6	8.0	-0.74	5.41	A
CERES - MUN	95 0042532AW	575.0)	5	2.8	89.6	456.0	-0.73	5.51	В
Chiltern Damwal, Vyeboom	34 20079	867.0)	5	8.9	29.6	309.0	-0.48	13.20) B
CITRUSDAL	41 0063005W	319.0)	5	6.7	65.0	165.0	-0.91	14.10) A
Citrusdal Proefplaas	32 20019	398.0)	0	19.4	61.6	198.0	-0.68	16.70) A
CLANWILLIAM DAM	21 0084642W	252.7		5	29.6	49.6	152.0	-0.48	35.43	3 B
CLAREMONT - PARADISE EST	71 0020839W	1272.8	3	0	7.3	8.2	30.0	-0.46	4.80) A
D F MALANLUGHAWE	85 0021178AW	73.9)	5	2.8	11.7	46.0	0.42	17.21	A
DE DOORNS - POL	103 0043329W	181.2	2	10	11.3	104.3	465.0	-0.86	39.55	5 A
DE GRENDEL	46 0021111W	390.4	Ļ	7	17.0	9.7	122.0	0.02	19.09	9 В
DE KEUR	47 0063538A	624.1		5	8.7	101.8	942.0	-0.59	0.20) A
DE MOND - BOS	33 0003192A	411.3	;	5	3.6	0.9	5.0	-0.78	83.92	2 B
Deelville, Prince Alfred Ha	24 20099	563.0)	5	5.2	91.7	480.0	-0.49	7.53	3 A
DIE ERF	10 0042700W	265.6	5	1	19.1	106.5	990.0	-0.56	10.27	7 A
DIEPKLOOF	56 0011065W	463.2	2	5	17.4	29.8	225.0	1.15	12.12	2 A
DOORNRIVIER	93 0022803W	226.0)	0	20.2	57.9	347.0	-0.86	8.39	ЭА
DOORNRIVIER	73 0022803A	245.9)	7	4.3	60.5	283.0	-1.03	10.27	7 B
DUNGHYE PARK	59 0007050W	415.7	,	5	18.3	23.0	122.0	-1.02	39.97	7 A
DURBANVILLE - POL	93 0021260W	599.6	5	1	11.6	17.1	157.0	0.02	26.40) A
DWARSRIVIER TNK	22 0042358W	578.0)	7	8.7	75.3	265.0	-0.60	4.96	5 A
Eendekuil SAPD	39 0062671W	304.0)	5	8.8	54.9	100.0	-1.30	26.43	3 B
EERSTERIVIER - BOS	81 0021330W	519.6	5	5	1.8	6.3	30.0	-0.17	23.93	3 A
ELANDSBAAI	28 0083618W	208.0)	5	4.0	0.6	14.0	-0.93	74.72	7 В
ELANDSFONTEIN	80 0084558W	506 0)	5	14 5	44.4	421.0	-0.77	31.89	ЭА
Elgin Proefplaas	33 20018	1039 ()	1	193	167	305.0	-0.81	7 3	7 A
ELIM	30 0083634W	244 9)	5	4.4	6.6	90.0	0.20	82.01	7 B
FRANSCHHOFK	32 00222054	244.9 854 e	i.	7	7.4 7.0	34.3	272.0	-0.93	8.00) B
FRANSCHOEK	32 0022174 A	854.7	, 1	, 5	7.5	34.3	272.0	-0.95	8.0. 8.1	7 B
GENADENDAL - COL	63 0007062W	452 7	,	5	35.2	J4.J 10 1	200.0	-0.65	12.90	
	50 00/20/9W	433.7		5	33.3	49.4	505.0 84.0	-0.03	10.00	
	SU UU42U48 W	215.0		5 5	2.3	09.3	04.0 174.0	-0.42	10.30	
URAAFWAIEK CDADOUW DOS	81 0006020A	215.0)	5 -	3.0	20.3	1/4.0	-0.59	J/.05	
	82 0000039A	1082.9	,	3 5	8.8	10.5	276.0	-0.81	0.8.	

Station	Length Number (Years)	MAP	Wind Index	R n	lough- ess	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
HELDERBERG NATURE RESERV	13 0005634W	773.7	7	5	20.2	5.9	150.0	-0.20	9.60) B
Heldervue	49 20100	809.0)	5	30.9	45.2	755.0	1.12	42.8	5 A
HELDERVUE	81 0062379AW	157.5	5	5	30.9	45.2	755.0	1.12	42.7	5 B
HERMANUS - MUN	71 0006415W	624.0)	5	7.1	0.1	24.0	-0.84	43.9	1 B
HIGHLANDS - BOS	55 0006167W	928.1		1	38.2	7.2	366.0	0.75	24.5	3 B
HILLCREST: AWS	4 30611	345.0)	5	41.7	12.1	313.0	1.80	22.8	3 B
HLS Boland, Agter-Paarl	37 20031	502.0)	1	8.6	40.0	149.0	-0.21	20.7	5 A
Hooggeleë	5 20032	380.0)	5	14.2	39.9	351.0	1.90	40.09	ЭА
HOPEFIELD - POL	99 0040604W	318.0)	7	9.2	24.3	40.0	-0.83	81.22	2 A
JONASKRAAL	16 0007714A	407.2	2	0	20.4	39.2	159.0	0.21	61.7	1 B
JONKERSHOEK - 2D	70 0021809W	1471.0)	1	30.3	18.0	314.0	-1.31	2.98	3 B
JONKERSHOEK - 3M	55 0022004W	878.3	3	5	12.3	55.2	209.0	0.13	7.50) A
JONKERSHOEK - BOS	81 0021778W	1076.1		5	34.9	18.3	244.0	-1.19	2.02	2 B
JONKERSHOEK - BOS	26 0021793W	718.9)	0	83.0	43.5	365.0	0.56	11.73	3 B
KAAP AGULHAS - VRT	105 0003020W	362.6	5	1	4.9	-10.0	8.0	-0.95	100.68	8 A
KERSEFONTEIN	82 0061594W	172.8	3	5	3.7	24.9	5.0	-1.17	79.74	4 B
KLAASVOOGDSRIVIER	40 0023890W	265.0)	5	5.7	85.1	179.0	-0.44	26.5	5 A
KLAPMUTS	61 0021621W	744.6	5	5	9.6	26.7	169.0	-0.72	10.4	1 B
KLAWER - IRR	35 0107197W	158.0)	5	11.8	34.5	42.0	-0.82	86.49	ЭА
KLEINFONTEIN	74 0008367W	324.7	7	0	14.3	45.4	168.0	-0.34	19.3	7 B
KLEINMOND - POL	45 0006051AW	691.9)	5	2.1	0.8	15.0	-0.79	29.52	2 A
KLIPDALE - SAR	66 0007828W	336.5	5	5	6.7	46.2	170.0	-1.11	49.0	1 A
KLIPHOEK	27 0062248W	317.7	7	5	10.0	32.3	65.0	-1.00	48.30) B
KLUITJIESKRAAL - BOS	106 0042326W	650.0)	5	5.3	75.2	269.0	-0.46	0.28	3 A
KNOLVLEI - BOS	38 0042264W	507.5	5	0	19.7	74.0	215.0	-0.82	4.10) A
KOEKENAAP - IRR	67 0106512W	120.3	3	7	4.1	18.3	68.0	0.48	126.60) B
KOGELFONTEIN	33 0004702A	585.8	3	5	35.4	3.3	163.0	-0.18	0.78	8 B
KOMPAGNIESDRIFT	22 0006343W	493.0)	1	20.2	17.8	91.0	-0.77	25.2	7 B
KORINGBERG	35 0041301W	372.5	5	1	41.1	53.5	130.0	-0.18	51.38	8 B
KRAAIFONTEIN - BOS	55 0021441W	527.2	2	7	9.5	25.1	122.0	-0.28	17.94	4 A
KUILSRIVIER	44 0021325W	630.4	Ļ	5	2.4	17.3	50.0	-0.86	22.30) A
LA PLAISANTE	60 0042357A	568.3	3	5	2.5	75.9	262.0	-0.59	3.00) A
LA PLAISANTE	58 0042357W	562.3	3	5	2.5	75.9	290.0	-0.35	3.00) B

Station	Length Number (Years)	MAP	Wind Index	Ro ne	ough- ss	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
										_
LAAIPLEK-POL	27 0061286W	210.0		5	2.4	1.6	7.0	0.09	95.31	В
LADISMITH-BUFFELSVLEI	85 0046059W	195.0		1	4.1	97.4	381.0	-0.79	52.02	2 B
LAMBERTSBAAI - POL	39 0083515W	144.9)	5	3.2	1.3	22.0	-0.75	84.48	3 A
Landau, Wellington	34 20072	505.0)	5	5.8	50.3	122.0	0.10	12.20) A
LANGEBAAN - POL	94 0040035W	251.0)	7	11.2	3.1	14.0	-1.05	101.76	δA
LANGEBAANWEG	104 0061298W	172.0)	5	2.1	13.4	31.0	-0.88	96.72	2 B
LANGGEWENS - AGR	85 0041347W	396.4		5	7.4	42.7	175.0	-0.05	43.03	3 A
Longdown	22 20080	23.0)	5	16.3	30.9	341.0	0.23	14.67	' A
LOURENSFORD	37 0005694W	930.6	i	5	8.1	8.2	122.0	-0.79	6.60) B
MALABAR FARM	60 0042669W	379.2	!	5	6.4	105.9	998.0	-0.39	8.96	δA
Malmesbury	5 20064	566.0)	5	12.6	36.1	152.0	-0.55	34.51	В
MIDDELDEURVLEI	36 0062768W	301.0)	5	4.9	62.2	168.0	-0.08	23.17	ИВ
MIDDELVLEI - BOS	27 0006232W	595.9)	7	5.5	3.0	30.0	-0.54	34.26	5 A
MIDDELVOETPAD	35 0024101W	169.3	1	5	30.0	93.7	366.0	-0.74	28.73	в
MIERKOM - BOS	16 0006658W	555.9	1	5	8.2	2.3	45.0	-0.24	54.02	2 A
MON DESIR	38 0010036W	399.5	i	5	8.5	29.0	145.0	-0.38	16.22	2 B
MONT PELLIER	33 0042166W	537.1		5	4.2	77.9	151.0	-0.57	11.00) B
MONTAGUE POLICE	9 0024228A	338.2	!	5	17.5	81.1	285.0	-0.63	16.16	бВ
MOORREESBURG - POL	42 0041279W	382.0)	1	5.5	48.3	149.0	-0.77	53.88	3 A
MOORREESBURG KO-OP	34 20066	408.0)	7	11.6	49.9	158.0	-0.77	52.48	3 A
MOUTONSHOEK	20 0062374W	544.9	1	0	18.4	39.5	137.0	-0.95	43.69	ЭВ
MUIZENBERG - PAVILION	31 0004816AW	970.1		0	55.9	1.2	15.0	-0.60	1.97	ИВ
NIVV PROEF	102 0021655A	723.1		5	32.3	20.0	197.0	-0.26	5.31	Α
Nooitgedacht	11 20128	881.0)	7	54.0	7.7	343.0	0.69	11.86	5 A
NOOITGEDACHT	46 0006887W	482.0)	0	17.5	22.1	208.0	-0.51	33.38	3 A
NOOITGEDACHT	20 0021593W	495.8		5	11.5	22.7	145.0	-0.84	9.39	A
NOOITGEDACHT - CERES	28 20052	777.0)	5	15.8	98.4	1040.0	-0.26	4.39	A
ODESSA	22 0042789W	264.3		5	8.6	111.5	960.0	-0.70	15.11	В
ONVERWACHT	70 0022069W	755.3		5	16.5	53.9	230.0	-0.54	4.12	2 B
ONVERWACHT	61 0022099W	702.3		5	16.5	53.9	262.0	-0.43	4.12	2 В
Oude Hemel en Aarde	13 20090	719.0)	5	27.0	6.8	243.0	-0.48	37.59	ЭВ
OUDEBOS - BOS	31 0005829W	1197.0)	5	34.6	2.5	60.0	-1.15	26.10) A
OUDEMUUR	26 0107867W	162.6	i	7	3.6	67.2	192.0	-1.34	51.34	B

Station	Length Number (Years)	MAP	Wind Index	Ro ne	ough- ess	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
Decidele of Witconkerroril	21 20152	096.0		7	20.5	00.4	905 0	0.04	2.04	תו
Paardekloof, Witzenbergvall	21 20152	986.0)	/	30.5	90.4	895.0	0.04	2.90) B
PAARL - AGR	60 0021825W	914.5	,	1	1.2	40.6	145.0	-0.58	9.60	DA
PHILADELPHIA POLISIE	70 0021130A	362.0)	0	8.4	13.9	70.0	-0.61	36.03	о В
Piketberg SAPD	124 0062444W	472.0)	0	22.8	53.0	230.0	-0.11	40.44	1 B
PLAATJESKRAAL	72 0008470W	397.2	2	5	18.5	23.5	168.0	-0.24	38.38	3 B
PLUMSTEAD	44 0004811W	790.0)	5	4.4	8.8	24.0	-0.35	5.60	5 B
POLPERRO	21 0022009W	797.4	Ļ	5	8.4	52.6	152.0	-0.41	7.10	6 B
PORT BEAUFORT	20 0009563W	291.7		0	4.0	3.5	41.0	-0.49	46.3	5 B
PORTERVILLE - MUN	91 0041871W	495.9)	5	4.9	79.1	137.0	-0.54	23.80) B
PORTERVILLE KO-OP	34 20068	517.0)	7	12.7	80.5	145.0	-0.76	22.48	3 A
PRINCE ALFRED HAMLET - P	34 0042588W	553.2	2	5	1.8	94.2	496.0	-0.56	9.20) B
PROTEM - SAR	59 0008136W	404.6	5	1	11.1	41.6	268.0	1.29	40.60	5 A
RABIESDAL	16 0023235P	297.0)	1	14.3	63.6	274.0	-0.58	20.09	ЭА
RAWSONVILLE - POL	96 0022521W	613.3	;	1	2.9	65.4	259.0	0.31	19.8	7 B
REMHOOGTE	53 0042281AW	979.0)	5	26.5	85.5	371.0	-0.91	9.08	3 B
RIEBEEK - KASTEEL - MUN	46 0041713W	659.7	,	0	10.4	54.1	122.0	-0.51	21.34	1 A
RIEBEEK - WES - POL	29 0041681W	577.2	2	1	21.9	53.0	168.0	-0.50	25.84	4 B
Riebeek-Wes Koöp	23 20063	560.0)	1	21.9	53.0	168.0	-0.50	25.84	4 A
RIVERSDAL	85 0010425AW	72.1		0	4.7	35.0	116.0	-1.12	11.2	l B
RIVERSDALE	103 0010456W	428.6	5	0	20.9	33.8	116.0	-1.01	12.8	l B
ROBERTSON	85 0023708AW	35.5	i	5	4.3	88.4	204.0	-0.47	33.59	Э В
ROBERTSON - AGR	28 0023710W	260.1		5	4.5	84.6	159.0	-0.91	33.94	1 A
ROBERTSON - MUN	62 0023619W	273.8	3	5	4.5	87.5	162.0	-0.76	35.08	3 B
ROBERTSON - TNK	109 0023678W	323.0)	5	4.5	87.5	183.0	-0.60	35.08	3 B
ROBERTSVLEI - BOS	45 0022148W	1947.0)	5	20.7	30.5	250.0	-0.86	8.9	R B
RONDEHEUWEL	38 0041836W	464 9)	5	7.8	56.3	73.0	-0.69	13.1	B
RONDEKOP	66 0046058W	176 1		1	47	97 <u>4</u>	410.0	-0.71	51.9	2 B
RONDEVLEI	53 0004874W	660.0)	5	1.7	37	3.0	-0.45	7.6	
Rustenberg Landgoed Stelle	8 21862	861.0	,)	7	24.6	22 0	310.0	_0.45	3.19	2 Δ
RUSTEONTEIN	73 0006332W	787.0	,)	5	24.0	22.9	320.0	-0.21	15 54	5 4
	65 0020790W	200.0	,)	1	23.4	54.5	0.0	-0.40	110.0	
SALDAINHA - POL	05 0000780W	529.9	,	1	1.9	0.4	8.0	-0.75	112.40 86.00	
	28 0107759W	196.1		с С	4.3	00.9	213.0	-0.34	80.9	2 D
PROTEM - SAR RABIESDAL RAWSONVILLE - POL REMHOOGTE RIEBEEK - KASTEEL - MUN RIEBEEK - WES - POL Riebeek-Wes Koöp RIVERSDAL RIVERSDAL RIVERSDALE ROBERTSON - AGR ROBERTSON - AGR ROBERTSON - MUN ROBERTSON - MUN ROBERTSON - TNK ROBERTSON - TNK ROBERTSVLEI - BOS RONDEHEUWEL RONDEKOP RONDEVLEI Rustenberg Landgoed, Stelle RUSTFONTEIN SALDANHA - POL SANDVLEI SARON - COL	59 0008136W 16 0023235P 96 0022521W 53 0042281AW 46 0041713W 29 0041681W 23 20063 85 0010425AW 103 0010456W 85 0023708AW 28 0023710W 62 0023619W 109 0023678W 45 0022148W 38 0041836W 66 0046058W 53 0004874W 8 21862 73 0006332W 65 0060780W 28 0107759W 101 0042011W	404.6 297.0 613.3 979.0 659.7 577.2 560.0 72.1 428.6 35.5 260.1 273.8 323.0 1947.0 464.9 176.1 660.0 861.0 787.0 329.9 196.1 443.7		$ \begin{array}{c} 1 \\ 1 \\ 5 \\ 0 \\ 1 \\ 1 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 1 \\ 5 \\ 7 \\ 7 \\ 5 \\ 1 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	11.1 14.3 2.9 26.5 10.4 21.9 21.9 4.7 20.9 4.3 4.5 4.5 4.5 20.7 7.8 4.7 1.4 24.6 23.4 7.9 4.3 13.4	41.6 63.6 65.4 85.5 54.1 53.0 53.0 33.8 88.4 84.6 87.5 87.5 30.5 56.3 97.4 3.7 22.9 34.3 0.4 66.9 73.9	268.0 274.0 259.0 371.0 122.0 168.0 168.0 116.0 204.0 159.0 162.0 183.0 250.0 73.0 410.0 3.0 310.0 320.0 8.0 213.0 120.0	$\begin{array}{c} 1.29\\ -0.58\\ 0.31\\ -0.91\\ -0.51\\ -0.50\\ -0.50\\ -1.12\\ -1.01\\ -0.47\\ -0.91\\ -0.76\\ -0.60\\ -0.60\\ -0.86\\ -0.69\\ -0.71\\ -0.45\\ -0.21\\ -0.45\\ -0.21\\ -0.45\\ -0.21\\ -0.40\\ -0.75\\ -0.34\\ -0.4$	40.66 20.09 19.8° 9.06 21.3° 25.8° 25.8° 11.2° 12.8 33.5° 33.9° 35.00 35.0	5 A 9 A 7 B 3 B 4 A 4 B 4 A 1 B 1 B 1 B 9 B 4 A 3 B 3 B 3 B 3 B 2 B 1 A 3 A 5 A 9 B 2 B 1 A 3 A

Station	Length Number (Years)	MAP	Wind Index	F	Rough- less	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
SCHEEPERSRUST	23 0024684W	301.9)	5	35.6	62.7	381.0	-1.26	8.42	2 A
SIMONSTOWN - MUN	125 0004762W	317.0)	0	49.5	1.7	60.0	-1.09	2.22	2 B
SMITSWINKELBAAI	39 0004826W	600.0)	5	23.4	1.2	15.0	-1.24	2.88	3 A
Sneeuwkop, Koue-Bokkeveld	25 20131	488.0)	0	45.6	113.1	966.0	-0.84	13.88	3 A
SOMERSET WEST - POL	100 0005605W	627.3	3	5	5.5	3.6	46.0	-0.56	11.24	4 B
SOUTRIVIER	64 0023602W	277.0)	1	6.7	111.3	1137.0	-0.53	55.20) A
SPRINGFONTEIN - STANFORD	5 30549	591.0)	0	20.7	6.2	34.0	-0.54	51.13	3 B
Stagmanskop, Citrusdal	25 20127	475.0)	1	27.0	53.1	587.0	0.52	22.11	I A
STEENBRAS NO 1 - RSV	80 0005611AW	644.0)	5	23.9	0.0	399.0	0.27	15.21	I A
STELLENBOSCH - TNK	47 0021625A	827.3	3	1	16.7	19.6	119.0	-0.71	6.90) A
STETTYNSKLOOF	53 0022440W	915.0)	5	88.0	49.9	451.0	-1.49	6.15	5 B
SUURBRAAK - COL	15 0009241W	612.2	2	5	26.3	46.6	150.0	-0.79	2.80) A
SWARTVLEI	45 0022368W	1008.9)	7	27.0	65.9	274.0	-0.27	12.60) B
TABLE MOUNTAIN - DEVILS	54 0020807W	311.7	7	0	104.3	4.3	431.0	0.95	3.80	5 B
TABLE MOUNTAIN - DISA HE	47 0020719W	1524.6	5	5	79.4	4.7	747.0	1.64	1.30) B
TABLE MOUNTAIN - HOUSE	92 0020719CW	1115.0)	5	41.5	4.7	745.0	1.64	1.00) B
TABLE MOUNTAIN - MOLTENO	116 0020746AW	585.0)	0	27.6	3.4	97.0	-0.48	2.09	ЭА
THE TOWERS	113 0040653W	476.0)	1	25.9	10.3	260.0	1.13	61.11	I B
TOKAI - BOS	98 0004723A	967.1	l	0	25.6	8.3	84.0	-0.53	2.71	I A
TOKAI - BOS	107 0004723W	865.0)	1	8.3	7.2	56.0	-0.52	4.10) A
TULBAGH	22 0042198W	507.6	5	5	9.6	79.9	150.0	-0.69	7.81	I A
TULBAGH - POL	126 0042227W	474.0)	7	12.0	79.0	163.0	-0.57	8.70) B
TUSSENBEIDE	87 0006527W	497.0)	5	18.1	13.7	189.0	-0.52	35.61	I A
TWEEVLEI	23 0008355W	290.8	3	5	9.1	22.9	76.0	-0.04	51.62	2 A
TYGERHOEK (WRS)	51 0007699A	435.0)	7	12.5	62.6	157.0	-0.63	39.94	4 B
UILENKRAAL - BOS	31 0001726W	500.6	5	5	3.0	2.1	45.0	-0.30	68.50) A
VANRHYNSDORP - TNK	120 0107396W	146.0)	5	6.0	51.1	122.0	-0.73	99.49	ЭА
VELDRESERWE	46 0022789A	237.3	3	5	3.4	77.0	232.0	-0.30	31.67	7 B
VERDWAALSKLOOF	12 0007792W	302.0)	1	16.2	55.8	226.0	-0.04	40.84	4 B
VOELVLEI	37 0002639W	496.4	Ļ	0	3.8	11.3	30.0	0.10	84.17	7 A
VOGELVLEI	30 0042529W	758.0)	5	4.2	91.5	472.0	-0.90	6.20) A
VREDENBURG - POL	70 0060864W	323.2	2	1	10.2	9.5	120.0	1.08	110.76	5 B
VREDENDAL	85 0106880AW	75.5	5	5	2.8	27.7	32.0	-0.75	103.36	5 A

Station	Length Number (Years)	MAP Wind Index	Ro ne	ough- ss	Continen- tality	Altitude	Expo-sure	Barrier Distance	Subset
Vredenhof, Noorder-Paarl	23 20141	740.0	0	43.0	45.2	154.0	-0.53	12.08	8 B
VRUGBAAR	100 0022038W	757.0	5	14.3	55.9	175.0	-0.70	5.00) В
WALKERS BAY - BOS	53 0006534W	659.0	5	15.7	0.9	28.0	-0.80	46.93	вВ
WARMBOKVELD	34 0042621W	593.6	5	3.4	93.2	485.0	-0.62	9.08	8 B
WELBEDACHT	74 0022005W	620.0	5	11.9	55.5	190.0	-0.06	7.30) A
WELGEMOED	34 0043109W	589.1	5	17.1	112.2	1175.0	0.30	30.15	бВ
WELLINGTON - MUN	26 0021878BW	627.7	5	6.5	52.4	116.0	-0.56	9.00) В
WELTEVREDE	24 0025206A	352.5	1	15.1	54.6	421.0	-0.91	4.84	B
WILGENHOUTENDRIFT	18 0062340W	340.8	7	4.9	37.7	122.0	-0.65	43.51	Α
ZANDDRIFT	21 0022174W	892.0	1	41.0	33.7	230.0	-0.82	9.12	2 В
ZEEKOEVLEI	39 0005034W	661.2	5	2.4	1.6	10.0	-0.98	9.07	ИВ
ZOAR - COL	41 0046809W	244.9	7	74.8	93.3	515.0	-1.00	53.90) A
ZORGVLIET	21 0025634W	64.0	5	25.5	86.4	457.0	-0.21	40.39	в
	62 5B	1469.0	5	125.6	20.2	655.0	0.10	0.22	2 A
	62 13B	1376.0	5	78.3	19.1	427.0	-1.04	1.72	2 A
	62 2B+2C	1474.0	5	31.3	18.1	305.0	-1.36	2.83	вВ
	14 0004732W	845.0	1	22.5	3.3	293.0	0.66	0.28	8 B

APPENDIX B : STEPWISE FORWARD LINEAR REGRESSION

Linear Regression Results for:

Y = OneArea!\$G\$1:\$G\$216

X = OneArea!\$H\$1:\$M\$216

Independent variable entry method: Forward Stepwise

P to enter = 0.010

Descriptive Statistics

Variable	Mean	Std Dev.	Ν
MAP	545.894	319.182	215
WindIdx	4.079	2.326	215
RoughIdx	17.820	19.001	215
Cont_km	39.171	31.783	215
AltFinal	231.330	232.004	215
ExpIdx	-0.433	0.595	215
Barrier_km	26.928	26.612	215

Pearson Correlations

	MAP	WindIdx	RoughIdx	Cont_km	AltFinal	ExpIdx	Barrier_km
MAP	1.000	-0.006	0.415	-0.203	0.158	-0.006	-0.488
WindIdx	-0.006	1.000	-0.093	0.100	0.022	-0.069	-0.003
RoughIdx	0.415	-0.093	1.000	-0.090	0.315	0.145	-0.262
Cont_km	-0.203	0.100	-0.090	1.000	0.601	-0.142	-0.154
AltFinal	0.158	0.022	0.315	0.601	1.000	0.215	-0.258
ExpIdx	-0.006	-0.069	0.145	-0.142	0.215	1.000	0.041
Barrier_km	-0.488	-0.003	-0.262	-0.154	-0.258	0.041	1.000

Significance for Pearson Correlations

	MAP	WindIdx	RoughIdx	Cont_km	AltFinal	ExpIdx	Barrier_km
MAP	-	0.933	0.000	0.003	0.020	0.934	0.000
WindIdx	0.933	-	0.175	0.143	0.753	0.316	0.963
RoughIdx	0.000	0.175	-	0.189	0.000	0.034	0.000
Cont_km	0.003	0.143	0.189	-	0.000	0.037	0.024
AltFinal	0.020	0.753	0.000	0.000	-	0.002	0.000
ExpIdx	0.934	0.316	0.034	0.037	0.002	-	0.548
Barrier_km	0.000	0.963	0.000	0.024	0.000	0.548	-

Step 1: Summ	nary						
\mathbb{R}^2	R	Adj. R ²	S.E. of E	Istimate			
0.238	0.488	0.234	279.316				
Step 1: ANO	VA						
Source	Sum Sq.	D.F.	Mean Sq.	F	Prob.		
Regression	#########	1	#########	66.447	0.000		
Residual	#########	213	#########				
Total	#########	214					
Step 1: Regre	ession Coefficier	nts					
Source	Coefficient	Std Error	Std Beta	-95% C.I.	+95% C.I.	t	Prob.
Intercept	703.383	27.132		649.902	756.864	25.925	0.000
Barrier_km	-5.848	0.717	-0.488	-7.263	-4.434	-8.152	0.000

Step 2: Sumn	nary						
\mathbb{R}^2	R	Adj. R ²	S.E. of Estimate				
0.326	0.571	0.320	263.231				
Step 2: ANO	VA						
Source	Sum Sq.	D.F.	Mean Sq.	F	Prob.		
Regression	#########	2	#########	51.321	0.000		
Residual	#########	212	#########				
Total	#########	214					
Step 2: Regre	ession Coefficier	nts					
Source	Coefficient	Std Error	Std Beta	-95% C.I.	+95% C.I.	t	Prob.
Intercept	585.034	34.017		517.979	652.089	17.198	0.000
RoughIdx	5.177	0.981	0.308	3.242	7.111	5.275	0.000
Barrier_km	-4.879	0.701	-0.407	-6.260	-3.498	-6.964	0.000
Ston 3. Summ	20.82						
D ²	D	Adi D ²	SE of E	stimata			
K 0.205	K K Adj. K		S.E. of Estimate				
0.385	0.621	0.376	252.075				
Stop 2. ANO	57 A						
Step 5: ANO	VA	DE	N. C		D 1		
Source	Sum Sq.	D.F.	Mean Sq.	F 44.026	Prob.		
Regression	##########	3	######################################	44.036	0.000		
Total	######################################	211	*********				
Total	********	214			i		
Sten 3. Regre	ession Coefficier	nts					
Source	Coefficient	Std Error	Std Bota	-95% C I	+95% C I	t	Prob
Intercent	708 106	42 565	Bid Deta	624 199	792.012	16.636	0.000
RoughIdx	4.595	0.949	0.274	2.725	6.465	4.843	0.000
Cont_km	-2.488	0.554	-0.248	-3.580	-1.396	-4.492	0.000
Barrier_km	-5.445	0.683	-0.454	-6.791	-4.099	-7.976	0.000
Step 4: Sumn	nary						
\mathbb{R}^2	R	Adj. R ²	S.E. of E	stimate			
0.407	0.638	0.395	248.217				
Step 4: ANO	VA						
Source	Sum Sq.	D.F.	Mean Sq.	F	Prob.		
Regression	########	4	########	35.964	0.000		
Residual	#########	210	########				
Total	#########	214					
Step 4: Regre	ession Coefficier	nts					
Source	Coefficient	Std Error	Std Beta	-95% C.I.	+95% C.I.	t	Prob.
Intercept	710.037	41.919		627.401	792.673	16.938	0.000
RoughIdx	3.363	1.035	0.200	1.322	5.404	3.248	0.001
C				5 205	2266	5 256	0.000
Cont_km	-3.786	0.720	-0.377	-5.205	-2.300	-3.230	0.000
AltFinal	-3.786 0.286	0.720 0.104	-0.377 0.208	-5.205 0.082	-2.366 0.490	2.759	0.000